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NEW MODEL FOR POPULATION-SUBPOPULATION DIFFERENCES

1. INTRODUCTION

Civil defense planning requires estimation of casualties from the use of
chemical warfare agents against the civilian population. Computer models of
atmospheric transport and dispersion can estimate the exposure of the civilian
population to chemical warfare agents from a given scenario. To assess casualties,
these models require estimates of the toxicity of chemical warfare agents to the general
population. The available estimates of the toxicity of chemical warfare agents (Grotte
and Yang 2001) are for military personnel. It is widely believed that the general
population is more susceptible to toxicants (harmful substances) than the military
subpopulation is and that the general population has more variability in susceptibility to
toxicants than the military subpopulation does. In the absence of data relevant to the
soldier-to-civilian adjustment, a subjective estimate must be used. A common practice
in toxicology is to account for an unknown difference by applying an uncertainty factor;
the default uncertainty factor for the difference between a population and a
subpopulation is 10—see, for example, Whalan, Foureman, and Vandenberg (2006).
Uncertainty factors are typically applied to a low percentile of a distribution to estimate a
safe level of exposure. Application of uncertainty factors to the parameters of a
distribution is unusual, but given the lack of methods for converting the parameters for
military personnel to parameters for the general public, such an application might be
made. Concern that estimates based on a factor of 10 might exceed what is
mathematically possible led to Crosier and Sommerville (2002) and Crosier (2003). The
model used in those reports has been criticized for its distributional assumptions. This
" report compares the previous work to a more realistic model that was proposed by an
associate editor of a journal.

2. BACKGROUND AND NOTATION

For each individual there is a dose that is just sufficient to cause a
specified response. These just sufficient doses are called effective doses to distinguish
them from the administered doses of a toxicological study, or the actual doses received
- by individuals. In toxicology, a dose is an amount, such as two pills, a teaspoonful, or
five milligrams. A dosage is an amount relative to something else, such as two pills per
day, a teaspoonful with each meal, or five milligrams of a substance per kilogram of
body mass. For exposure to toxicants in the atmosphere, the dose (amount absorbed)
is unknown. The toxicity of inhaled toxicants is characterized by the exposure
concentration and the exposure duration, which can be combined into a single number
by one of several models. The distinction among dose, dosage, and exposure is not
needed for modeling subpopulations; henceforth, the term dose will be used generically
for dose, dosage, or exposure. A lognormal distribution of effective doses is typically
used both by toxicologists for the analysis of data and by modelers for the prediction of
casualties—see, for example, Cornwell and Marx (2006).



Toxicologists characterize a lognormal distribution of effective doses by its
median effective dose (EDsp) and its probit slope. The probit slope is the reciprocal of
the standard deviation of log(effective dose), where log is the common (base 10)
logarithm. Therefore, the probit slope has units of standard deviations per one base-10
logarithm unit, or, equivalently, standard deviations per a factor-of-10 change in the
dose. For both the population and a subpopulation, these toxicological parameters are
related to the mean p and standard deviation ¢ of a normal distribution by

Up = log(population EDsp) (1)
Ks = log(subpopulation EDsg (2)
o, = 1/ (population probit slope (3)
os = 1/(subpopulation probit slope) 4)

in which the subscripts p and s represent population and subpopulation, respectively.

3. CRITICISM OF THE ASSUMPTIONS

The inconsistency between the assumptions that p, < ys, 0, > 05, and
lognormal distributions of effective dose for both the population and the subpopulation
can be illustrated by a plot of percent of individuals responding to a dose versus the
dose on lognormal probability paper. Figure 1 shows the lines for a population with
Mp =0, op = 0.3 (solid line) and a subpopulation with ps = 0.2, o5 = 0.1 (dashed line).

Percent Responding
o
o
1

Dose

Figure 1. Probability Plot for a Population (solid) and a Subpopulation (dashed)



The lines in Figure 1 cross at dose = 2; at any dose > 2, the fraction of the
military subpopulation responding to the dose will be larger than the fraction of general
population responding to the dose. This nonsensical result is a direct consequence of
the seemingly reasonable assumptions made in the problem formulation.

4. SUBPOPULATION MODEL

This model from Crosier and Sommerville (2002) and Crosier (2003)
accepts the assumptions of the problem as given—that is, lognormal distributions of
effective doses for both the population and the subpopulation—and checks whether the
values for yp, Op, Us, and o are mathematically consistent with those assumptions and
with the subpopulation size. lts development is repeated here to establish some
concepts and notation and for comparison to an alternative model in the next section.

Figure 2 shows histograms of log(effective dose) for a population and a
subpopulation that is 30% of the population. The curves in Figure 2 are not probability
densities but frequencies—normal curves fit to histograms—as described, for example,
in Dixon and Massey (1969). Letting x = log(effective dose) and h(x) = height of the
normal curve fit to a histogram, the equations for the normal curves for the population
and subpopulation are:

ho (X) = [ Np W/ 0 (2m) "] expl— (x — pp)?/ 2 0] (5)
hs () = [ Ns w/ 05 (211)"?] exp[— (x — ps)?/ 2 05%] (6)

where N, is the size of the population, N is the size of the subpopulation, and w is the
width of the class intervals, or frequency bins, used to construct the histograms.

In Figure 2, the same set of class intervals were used to construct both the
population histogram and the subpopulation histogram. Because members of a
subpopulation are also members of the population, the subpopulation cannot have more
members in a class interval, or bin, of the histograms than the population does. In
terms of the normal curves, the height of the subpopulation curve cannot exceed the
height of the population curve at any value of x. Consider two cases.

Case 1. Supposing ps = dp, we have hg(x) < hy(x) at x = ps = Wp,
immediately leading to Ns /05 < N, /0y, or (Ns/Np) op < o—that is, the subpopulation
standard deviation cannot be less than N/ N, times the population standard deviation.
It is convenient to define the subpopulation size as a fraction, 8 = Ng/N,, of the
population size.

Case 2: Again supposing s = Mp, consider how large os may be; o,
cannot exceed o, because the heavier tail of the subpopulation curve would become
higher than the tail of the population curve at some large value of x. Thus, the limits on
Os are established: 6 o, < 05 < 0.



Number of Individuals

Log(Effective Dose)
Figure 2. Histogram of Log (Effective Dose); Subpopulation Size is 30%.

For 0<8<1 and 680, < 05 < Op, Ys Mmay vary over some range without the
height of the subpopulation curve exceeding the height of the population curve at any
value of x. If us is equal to a limit of its allowable range, the subpopulation curve will
make contact with the population curve at the contact point. Figure 3 uses the normal
curves without the histograms to illustrate the contact point for the case with ps > pp.
The case with ps < yp, would yield the mirror image of Figure 3. Denote the x coordinate
of the contact point by xo. At the contact point, the heights of the two curves are the
same, hs(xo) = hp(Xo). Also at the contact point, the derivatives of the two curves must
be the same, as otherwise the curves would cross. These two conditions (on heights
and derivatives) yield two equations that can be solved to obtain an expression that
identifies the feasible combinations of the parameters. To simplify the derivation, which
is given in Crosier (2003), it is helpful to use the linear transformation zp(x) = (x—pp ) /
op. For the subpopulation, the mean and standard deviation of z,(x) are

0= (Hs—Hp)/0Op (7)
and
£= 05/ 0p (8)

respectively, whereas for the population, z,(x) has mean zero and variance one. The
derivation yields
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5=+[2(?~1)LN(®/e)]"? (9)

where LN is the natural (base e) logarithm. Equation (9) gives the limits of the feasible
range for & as a function of 6 and . Therangesof6andcare0<B<e<1.

Number of Individuals

Log(Effective Dose)
Figure 3. Contact Point of Population and Subpopulation Curves

In toxicological applications, a subpopulation with & > 0 is called a
resistant subpopulation and a subpopulation with & < 0 is called a sensitive
subpopulation. The term feasible region will be limited to either the resistant
subpopulation case or the sensitive subpopulation case. It is only necessary to study
one case; the results apply to the other case by symmetry. Figure 4 shows the feasible
region (shaded) for a resistant subpopulation of size 6 = .3. The feasible region
appears to be a semi-ellipse, but it is slightly asymmetric in the left-right direction; this
asymmetry is more pronounced for smaller values of 6. The line drawn from the origin
tangent to the feasible region in Figure 4 touches the feasible region at the point where
the ratio d/¢ is maximized. This combination of & and €, which is marked by a diamond
in Figure 4, yields the minimum value for p, because, from (7) and (8),

Hp = Hs — (0/€) 05 (10)
Equation (10) allows calculation of the median effective dose for the general population,

which is antilog(yp), from the known quantities ps, 05, and parameters (5 and ¢) that
describe the relationship between the population and the subpopulation.

11




Subpopulation Mean (3)

o 1 2 3 4 5 6 .7 8 .9 1
Subpopulation Standard Deviation (&)

Figure 4. Feasible Region of 6 and ¢ for a Subpopulation of Size 6 = .3

The values of ¢ and & that maximize the ratio &/¢ may be found
analytically. The ratio d/e can be at its maximum only if 5 is at its maximum for the
given value of €. Therefore, d in the ratio &/ can be replaced by the right-hand side of
(9). Monotonic transformations are often used to simplify the process of finding
maxima; here, squaring works well. Taking the derivative of (5/¢)? with respect to ¢,
setting the derivative to zero, and solving for ¢ yields

&= 0 exp[(1-¢9)/2) (11)

Setting the derivative to zero fixes the value of €, so it is denoted ¢, to indicate that it is
the value of £ that maximizes the ratio /. For fixed 8, (11) can be solved by a
numerical procedure, then (9) can be used to obtain &;, the value of & that corresponds
to £, and hence maximizes the ratio &/¢, from ¢,.

The application is a subpopulation-to-population problem—given 8, s,
and o, how large can |us — pp| be? The solution involves maximizing the ratio &/¢ for
fixed 6. A population-to-subpopulation problem—given 6, p,, and o,, how large can
|us — Hp| be?—requires finding the maximum value of & for fixed 6 (the triangle in Figure
4). The maximum value of 8, &y, and the value of € at which it occurs, &, can be found
analytically by a procedure similar to the procedure used to find &, and ¢;.

12



5. COVARIATE MODEL

The covariate model, which was proposed by an anonymous associate
editor of The American Statistician, describes the physical process of generating a
subpopulation. Military personnel are selected on the basis of characteristics that may
be correlated with effective dose. Let X be the random variable of interest—here,
log(effective dose)—and Y be the random variable by which the selection of
subpopulation members is made. For convenience, assume that both X and Y are
standardized so that the population has mean zero and variance one for both X and Y.
If the subpopulation consists of all individuals for which a <Y < b, then the probability
density function (pdf) of X for the subpopulation is

b
Ly (xy)dy

oty (v)dy

(12)

sz (X)

where fx v(x,y) is the joint probability density function of X and Y for the population

and fy(y) is the marginal probability density function of Y for the population. Note that
the integral in the denominator of (12) yields the value of 6. If a < b and fx y(x,y) is a
bivariate normal distribution with correlation coefficient p > 0, then fxs(x) is not a normal
distribution. Therefore, the subpopulation model, which assumes that the subpopulation
has a normal distribution, cannot be correct for the application. It can, however, be

a useful approximation if the distribution of the subpopulation is close to normal.

The pdf fxs(x) can be obtained by numerical integration and compared to a normal
distribution with the same mean and variance as fxs(x) [the subpopulation mean & and
variance ¢ are obtained numerically from fxs(x)]. | compared fxs(x) of the covariate
model to its normal approximation by using the cumulative distribution function (CDF),
Fxs(x). The CDF Fxs(x) gives the fraction of individuals in the subpopulation responding
to a dose x. Let C be the maximum value of |Fxs(x) — ®((x — d)/¢)| for any x, where O is
the standard normal CDF. Numerical calculations show that, for 6 > .001, the criterion
C does not exceed .01 if |p| = .69. '

To make a figure showing the feasible region of & and ¢ for the covariate
model, it is necessary to fix 8 and compute & and € numerically for various values of p,
a, and b. Attention to several special cases may enhance understanding of the
covariate model. First, if p = 0, the selection by Y is irrelevant; the subpopulation has a
normal distribution with the same parameter values as the population. Therefore, the
case p = 0 is represented by the single point 8 = 0 and ¢ = 1. Second, if p =1, X has
the same distribution as Y, which, for the subpopulation, is a truncated normal
distribution with a truncating a fraction q4 and b truncating a fraction q,. Johnson and
Kotz (1970) give formulas for the mean and variance of truncated normal distributions.
Third, if g1 = a2, then the distribution of X for the subpopulation is symmetrical, 5= 0,
and the value of € depends on the two parameters p and 8 = 1 — q1—g.. Fourth, if
either g4 = 0 or gz = O—indicating one-sided or single truncation—the results can again
be expressed in terms of the two parameters p and 6. If Y represents the health status
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of individuals, and the military does not reject anyone for being too healthy, then g, =0
is reasonable.

For the general case of single or double truncation, Figure 5 shows the
feasible region of € and © for 8 =.3 from the covariate model (dashed curves and dash-
dot line). The apex of the feasible region from the covariate model, which is marked by
a square in Figure 5, represents the point p = 1 and g, = 0. The parameter combination
p =1 and gz = 0 puts the subpopulation into the upper tail of the population and
therefore was called the tail model by Crosier and Sommerville (2002). The left side—
which has long dashes—represents p = 1; q, varies from zero at the top to (1 -86)/2 =
.35 at the bottom. The right side—which has short dashes—represents q; = 0; p varies
from one at the top to zero at the bottom. For single truncation (g, = 0), the feasible
region consists only of this curve of short dashes. The line at the base of the feasible
region—which has a dash-dot pattern—represents symmetrical truncation (g1 = q2); p
varies from one at the left end to zero at the right end. The upper boundary of the
feasible region from the subpopulation model is outlined in gray, and its maximum-ratio
and maximum-mean points are again marked with a diamond and triangle, respectively.
The circle in Figure 5 marks the intersection of the upper boundary of the feasible
region of the subpopulation model with the feasible region of the covariate model for
single truncation. This point is the worst-case parameter combination for a
subpopulation created by single truncation on a covariate, given the requirement for
approximately normal distributions for the population and the subpopulation. The
centroid from the subpopulation model (see Crosier 2003) is marked by an asterisk in
Figure 5. The feasible region of the subpopulation model indicates approximately the
region where the distribution of a subpopulation obtained by truncation on a covariate
can be adequately represented by a normal distribution.

Table 1 gives the standardized parameters 6 and ¢ for resistant
subpopulations and the goodness-of-fit criterion C for the normal approximation of the
subpopulation distribution. The worst-case parameter sets (in terms of maximizing |u, -
us| ) are given for (1) double truncation, population-to-subpopulation conversion, (2)
double truncation, subpopulation-to-population conversion, and (3) single truncation.
For single truncation, there is no difference between maximizing & and maximizing the
ratio &/¢; hence, there is only one worst-case set of parameters for both population-to-
subpopulation and subpopulation-to-population conversions. In Figure 5, the three
cases of Table 1 are marked by a triangle, a diamond, and a circle, respectively.

The values of 6, §, and ¢ in Table 1 should satisfy (9).

14
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Figure 5. Comparison of Feasible Regions from Covariate
and Subpopulation Models

Table 1. Standardized Parameters and the Goodness-of-Fit Criterion for Resistant
Subpopulations. For sensitive subpopulations, multiply the means by —1.

Double Truncation
Maximum Mean

Double Truncation
Maximum Ratio

Single Truncation

Size Mean StDev Fit Mean StDev Fit Mean StDhev Fit
0 Ox Ex C O, €r C &y €y C
.05 1.873 .434 .017 .993 .082 .009 1.807 .576 .016
.10 1.554 .489 .017 .974 .163 .012 1.490 .630 .015
.15 1.347 .532 .016 . 942 .240 .013 1.287 .667 .014
.20 1.189 .569 L0158 .901 .314 .014 1.134 .696 .013
.25 1.059 .602 .015 .853 .383 .014 1.008 .722 .013
.30 .946 .633 .014 .800 .447 .014 .900 . 744 .012
.35 . 846 .663 .014 . 743 .507 .014 .805 .766 .011
.40 .756 .691 .013 .683 .563 .014 .719 . 785 011
.45 .673 .719 .012 . 623 .614 .013 .640 . 804 .010
.50 .596 . 746 .012 .562 .662 .012 .568 .822 .010
.60 .455 .798 .010 .441 .748 .011 .435 . 857 .008
.75 .269 .875 .007 .266 .857 .008 .259 .908 .006
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In terms of the application, the complementary subgroup consists of all
persons who are unfit for military duty. The removal of all healthy, young adults from a
population creates an unnatural population in the biological sense; it is not surprising
that this unnatural population does not have a normal distribution.

The covariate model only allows for selection by specification of an
acceptable range on the covariate. More general selection processes can be modeled
as follows. Let Py(y) =1fora<Y <b and Py(y) = 0 otherwise. Then (12) can be
written as

TPy (y) fxy (xY)dy
fof) = (9

" Py(y)fy (y)dy

where the integrations extend from -« to = mathematically, but, for numerical
integration, over an interval sufficient to include nearly all of the distribution. A process
for selecting a subpopulation that is more complicated than an acceptable range on a
covariate can be incorporated into the covariate model by letting Py(y) take on values
other than 0 and 1, subject to 0 < Py(y) < 1 for all y. Note that | Py(y) fv(y) dy = 6. | call
Pv(y) a selection function. A selection function can also be applied to, or defined for,
the variable of interest by using the heights of the histograms in Figure 2: let Px(x) =
hs(x) / hp(x).

6. COMPARISON OF METHODS

From (10), the estimate of the EDs for the general population depends on
1/, the probit slope of the toxicant for the military subpopulation. The probit slopes
listed in Grotte and Yang (2001) range from 3 to 12. Therefore, to compare the
methods of making estimates, | use fictitious toxicants with an EDsp of 100 and probit
slopes of 3, 6, and 12 for the military subpopulation. Table 2 gives the EDsp and the
probit slope for the general population by three methods. The probit slope for the
general population is simply € times the probit slope for the military subpopulation.

Applying a factor of 10 to the parameters used in toxicology, the EDsg and
the probit slope, yields the estimates yp, = ys — 1 and o, = 10 0s. The uncertainty factor
method does not explicitly depend on either the subpopulation size or the subpopulation

probit slope.

16



Table 2. Median Effective Dose and Probit Slope for the General Population

Military Subpopulation Type of Estimate for the General Population
Probit Uncertainty Double Single

Size Slope Factor Truncation Truncation
0 ED50 1/05 ED50 I/Gp ED50 l/Gp ED5() I/Gp
.2 100 3 10 .3 11 0.9 29 2.1
.2 100 6 10 .6 33 1.9 54 4.2
.2 100 12 10 1.2 57 3.7 73 8.4
.3 100 3 10 .3 26 1.4 39 2.2
.3 100 6 10 .6 51 2.7 63 4.4
.3 100 12 10 1.2 71 5.4 79 8.9
.4 100 3 10 .3 39 1.7 50 2.4
.4 100 6 10 .6 63 3.4 70 4.7
.4 100 12 10 1.2 79 6.7 84 9.5

The estimates for double truncation are based on the maximum-ratio
values &, and ¢, because the conversion is subpopulation to population. The basis for
the use of double truncation is that age is the covariate, and young adults correspond to
some age range, say, 18 to 35 years. The straight-line regression of log(effective dose)
on age—as implied by the bivariate normal distribution—results in children being more
resistant to toxicants than young adults are. Such an assumption is not acceptable for
risk assessment. The basis for the use of single truncation is that health status is the
covariate, and there is no segment of the population healthier than young adults. Single
truncation results in less extreme conversions than double truncation. This result may
seem backwards because single truncation puts the subpopulation into the tail of the
distribution of the covariate. Single and double truncation are not compared on the
same basis because the correlation coefficient p is not held constant. To obtain an
approximate normal distribution for the variable of interest, single truncation requires a
lower value of |p| than double truncation does. The lower value of |p| results in less
difference between the subpopulation and the population. In the application, the EDsp
and the probit slope for both the population and the subpopulation are used as if they
apply to a lognormal distribution, so to compare single and double truncation it seems
better to use approximate normal distributions of log(effective dose) for both types of
truncation than to use the same value of p for both types of truncation.

7. ‘ CONCLUSION
As shown in Figure 5, most combinations of parameters indicated as

feasible by the subpopulation model are also indicated as feasible by the covariate
model. At the combinations of parameters indicated as feasible by the subpopulation

17




model, the discrepancy between the actual distribution of the subpopulation, as
obtained from the covariate model, and the normal distribution assumed by the
subpopulation model is small, as indicated by the values of the criterion C in Table 1.
More extreme worst-case scenarios can be obtained from the covariate model than
from the subpopulation model, but only by allowing the subpopulation to have a very
non-normal distribution.

The covariate model distinguishes between single and double truncation.
The combination of parameters suggested as worst-case values by Crosier (2003) can
be obtained from the covariate model only by double truncation on the covariate.
However, no covariate for which double truncation is appropriate has been suggested.
Age cannot be the covariate because it cannot have a bivariate normal distribution with
the logarithm of effective dose—sensitive individuals are at both ends of the age range.
If health status is the covariate, then only single truncation is a plausible procedure for
selecting military personnel from the general population. Single truncation on the
covariate limits the possible parameter combinations to the right-side boundary of
the feasible region for the covariate model in Figure 5. Hence, the combination of
parameter values previously suggested as the worst-case (the diamond in Figure 5)
are not realistic. Similarly, the parameter combinations denoted centroid values (the
asterisk in Figure 5) by Crosier (2003) are also not realistic because they require double
truncation on the covariate. Another problem with centroid estimates is that they are
dependent on the scale over which the averaging is done. For example, they depend
on whether the standardization is by the population parameters [ & = (ys — pp ) / 0p @and
£ = 05/ Op ] or by the subpopulation parameters [n = (up, — Hs) / Os and y = 0p / 05 ].
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Disclaimer

The findings in this report are not to be construed as an official Department of the Army
position unless so designated by other authorizing documents.



